
1

SANDIA REPORT
SAND2017-12477
Unlimited Release
Printed November 2017

Simulation Data Management –
Requirements and Design Specification
Robert L. Clay, Ernest J. Friedman-Hill, Marcus J. Gibson, Edward L. Hoffman, Daniel Laney,
Kevin H. Olson

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology and Engineering Solutions of Sandia, LLC.

2

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401

Facsimile: (865) 576-5728

E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Rd

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
http://www.ntis.gov/search

3

SAND2017-12477
Unlimited Release
Printed November 2017

Simulation Data Management – Requirements
and Design Specification

Robert L. Clay, Ernest J. Friedman-Hill, Marcus J. Gibson, Edward L. Hoffman
Scalable Modeling and Analysis Department

Kevin H. Olson
SAIC

Daniel Laney
LLNL

Sandia National Laboratories
P.O. Box 5800

Albuquerque, New Mexico 87185

Abstract

Simulation Data Management (SDM), the ability to securely organize, archive, and share
analysis models and the artifacts used to create them, is a fundamental requirement for modern
engineering analysis based on computational simulation. We have worked separately to provide
secure, network SDM services to engineers and scientists at our respective laboratories for over a
decade. We propose to leverage our experience and lessons learned to help develop and deploy a
next-generation SDM service as part of a multi-laboratory team. This service will be portable
across multiple sites and platforms, and will be accessible via a range of command-line tools and
well-documented APIs. In this document, we’ll review our high-level and low-level
requirements for such a system, review one existing system, and briefly discuss our proposed
implementation.

4

CONTENTS
1 Introduction .. 11

2 Concept of operations ..12
2.1 General definitions... 12

2.2 Basic Use Cases .. 12

2.2.1 Commit artifacts...13

2.2.2 Query artifacts ..13

2.2.3 Download artifacts..13

3 User Requirements ...14
3.1 Configuration management...14

3.1.1 Document Versioning ..14

3.1.2 Baselining*..14

3.1.3 Dependency Management ...14

3.2 Security... 14

3.2.1 Flexible authentication system..14

3.2.2 Personnel Database Interface ..14

3.2.3 Need to Know (NTK) Access Control ..14

3.3 Document Access Control...15

3.3.1 Project Browsing..15

3.3.2 File name search ..15

3.3.3 Full text search* ...15

3.3.4 Metadata based search..15

3.3.5 Search and Need-To-Know (NTK)..15

3.3.6 Document URL’s...15

3.4 Document Metadata... 15

3.4.1 Classification..15

3.4.2 Engineering notes..15

3.4.3 Standard document attributes...15

3.4.4 User attributes ..15

3.5 Interfaces... 16

3.5.1 RPC interface ...16

3.5.2 Command line interface..16

3.5.3 Web Interface ..16

5

3.5.4 Workflow component interface ..16

3.6 Project Requirements Management...16

3.6.1 Level of Formality..16

3.6.2 Requirements ..16

3.6.3 Peer Review ...16

4 Functional Requirements ...17
4.1 Project Actions... 17

4.1.1 Roles ..17

4.1.2 Create Project ..17

4.1.3 Advance Lifecycle ..18

4.1.4 Modify Attributes...18

4.1.5 Adjust Team Members (see Team Actions) ...18

4.2 Folder Actions .. 19

4.2.1 Create Folder ...19

4.2.2 Add Artifact to Folder ..19

4.2.3 Remove Folder from Folder..19

4.2.4 Remove Artifact from Folder..19

4.2.5 Delete Folder ...19

4.2.6 Update Folder Attributes ...19

4.2.7 Adjust Sharing...20

4.2.8 Register for Notifications ...20

4.3 Artifact Actions .. 20

4.3.1 Create Artifact ...20

4.3.2 Add File Version to Artifact ...20

4.3.3 Add Artifact to Folder ..21

4.3.4 Update Artifact Attributes ...21

4.3.5 Move Artifact to Another Folder ...21

4.3.6 Modify Artifact Lifecycle State ...21

4.3.7 Delete File Version(s) ..22

4.3.8 Delete Artifact ...22

4.3.9 Search for Artifact by Attributes ...23

4.3.10 Specify Access Control on an Artifact (e.g., group or role) ..23

4.3.11 Change Owner of an Artifact...23

4.3.12 Relate Artifact to another Artifact..23

6

4.3.13 Relate Artifact to other Object ...24

4.3.14 Lock to prevent modifications ...24

4.3.15 Register for Notifications ...24

4.4 Team Actions.. 24

4.4.1 Add Person to Team ...24

4.4.2 Change Role of Person on Team..24

4.4.3 Remove Person from Team...24

4.5 History Actions .. 24

4.5.1 Automatic History ...24

4.5.2 Add User Defined History Entry..24

4.5.3 Obtain History for an Object ...25

5 Technical Requirements ...26
5.1 Open Interface ... 26

5.1.1 Must be possible to integrate with Java, Python, command-line front ends26

5.2 No Runtime Cost .. 26

5.2.1 Must be possible to deploy with no commercial license encumbrance...........................26

5.3 Transaction Management ..26

5.3.1 Transaction support required..26

5.3.2 ACID compliance..26

5.3.3 Both read and update transactions..26

5.4 Ability to define Attributes..26

5.4.1 Type (e.g., String, float, etc.) ..26

5.4.2 Default Values ...26

5.5 Ability to define various "types" of objects ..26

5.5.1 Collection of attributes..26

5.5.2 Hierarchical and inheritable ...26

5.5.3 Optionally used in search...26

5.6 Ability to separate data into different shards or tablespaces ...26

5.6.1 Based upon type or controlling workflow ..26

5.7 File Storage ... 26

5.7.1 External to the metadata management..26

5.7.2 Must support: ..26

5.7.3 File Versioning ..26

5.7.4 A File Version must exist as an object that may be related (e.g., baselining)26

7

5.8 Index-based Search .. 26

5.8.1 Attribute based for selecting metadata..26

5.8.2 Full file text search..27

5.8.3 Must respect the security model...27

5.9 Flexible Authentication mechanisms...27

5.10 Authorization must .. 27

5.10.1 Be object-level based ...27

5.10.2 Support object attributes for authorization adjudication..27

5.10.3 Support custom modules for extending the authorization model27

5.10.4 Must be handled on the server (i.e., never return to the client data that is
inappropriate) ..27

5.11 Access and Collections must include..27

5.11.1 Person...27

5.11.2 Group ..27

5.11.3 Role (but RBAC alone is insufficient) ..27

5.11.4 Must be able to prevent "owner" from having access ...27

5.12 Extensible Trigger System ...27

5.12.1 Type based..27

5.12.2 Event driven for multiple event types (pre/override/post on various events such as
create/update attribute/delete/etc.)...27

5.13 Ability to "subscribe" to various object events...27

5.13.1 Notification when certain object events occur, such as adding a file, changing the
owner, etc. ..27

5.14 Lifecycle states... 27

5.14.1 Ability to define different lifecycles...27

5.14.2 Apply these lifecycles to the objects..27

5.14.3 Access control must be tied to lifecycle state..27

5.15 Administrative Console ..27

5.16 Unique Object Reference (i.e., an Object Identifier) ...27

5.16.1 Must be stable ...27

5.16.2 Must not be tied to a display attribute that can change..27

5.17 History entries created automatically by various activities ..27

5.17.1 Ability to add custom history entries ...27

5.17.2 History must tie to specific objects..27

5.18 Relationships between objects ..28

8

5.18.1 Attributes on relationships ...28

5.18.2 Cardinality ..28

5.18.3 Type limited ...28

5.18.4 Direction (to/from based upon object type) ...28

5.18.5 Ability to use in traversal ...28

5.18.6 Participate in the Trigger system ...28

5.19 Ability to lock an object to prevent updates and/or file additions................................28

5.20 Robust Permission Model ..28

5.20.1 Create..28

5.20.2 Read Attributes...28

5.20.3 Update Attributes ..28

5.20.4 Delete ..28

5.20.5 Relate to a Parent Object ..28

5.20.6 Relate to a Child Object ...28

5.20.7 Remove Relationship ...28

5.20.8 Add File Version ...28

5.20.9 Remove File Version...28

5.20.10 Download File Version ..28

5.20.11 Create Copy ..28

6 Case Study .. 30
6.1 The Sandia Analysis Workbench (SAW)..30

6.2 Current Risks and Limitations..30

7 Software Specification ...32
7.1 SDM Object Model ... 32

7.1.1 Container...32

7.1.2 Document..33

7.1.3 Relationships ...34

7.2 Proposed Implementation...36

8 Appendix I: Glossary..38

9

FIGURES

Figure 1. Project Navigator View...13
Figure 2. Project attributes ..18
Figure 3. Folder attributes. ..20
Figure 4. Updating lifecycle state for an artifact. ..22
Figure 5. Specifying access control on an artifact. ..23
Figure 6. Obtaining history for an object...25
Figure 7: SAW SDM Architecture ...30
Figure 8. SDM Object Model..32
Figure 9: Container object model ...33
Figure 10: Document type object model...34
Figure 11. SDM Object Model..35

10

1 INTRODUCTION

According to NAFEMS* Simulation Data Management (SDM) is the effective management of
simulation data and process information to ensure support for digital product development,
manufacturing, and life cycle management. SDM is a technology which uses database
technology to enable users to manage structures of simulation and process data across the
complete product lifecycle. SDM artifacts can be data, models, processes, documents and
metadata relevant to modeling, simulation, and analysis. SDM provides the ability to securely
organize, archive, and share analysis models and the artifacts used to create them. A good SDM
system provides version control for documents being worked on, and archiving for completed
projects. It also preserves and records the provenance of all the data is contains, so years
afterward someone can reconstruct exactly what went into an experiment or calculation, and how
a result was obtained.
In a general SDM system, spanning multiple engineering disciplines, the data is less structured
than what is typically stored in a Product Data Management (PDM) system. There are multiple
reasons for this reduced structure, though one primary reason is the lack of a controlling CAD
file. On the other hand, SDM requires more structure than a classic Document Management
System (DMS), as properties like analysis domain, data provenance, team membership and
manager/employee relationships form an important part of how the data is stored, searched and
retrieved.
In a secure environment based on need-to-know (NTK) information access, a mature security
model is an important part of an SDM system’s capabilities. The ability to integrate with existing
access control mechanisms is a strict requirement, as is a security model with the granularity
needed to express the dynamic and sometimes complex set of permissions afforded to the
individual.
Large numbers of files, some of them very large in terms of data size, can be generated while
creating and executing analysis models. An SDM system needs to be able to scale to handle
these conditions, or have a mechanism for dealing with them. In addition, many analysis files are
transitory in nature. While there is a need to control and share them during a limited time frame,
these files may be safely discarded after an analysis project is complete.
Computational simulation (CompSim) is important to our several missions, and we are charged
with providing SDM to support CompSim at our sites, some of us for over a decade. As
CompSim continues to grow both in importance and in scale, our teams hope to jointly deploy a
new and more powerful SDM service for a broader range of applications. It is hoped that by
pooling resources, we can create a new service with enhanced capabilities and characteristics for
a larger customer base. By defining a shared specification with an open-source implementation,
we hope to be able to deploy a better system at a reduced cost, and provide value to a larger
audience.

* https://www.nafems.org/publications/browse_buy/browse_by_topic/data/
what_is_simulation_data_management_/

https://www.nafems.org/publications/browse_buy/browse_by_topic/data/what_is_simulation_data_management_/
https://www.nafems.org/publications/browse_buy/browse_by_topic/data/what_is_simulation_data_management_/

11

2 CONCEPT OF OPERATIONS

2.1 General definitions
In this chapter, we present a conceptual model for Simulation Data Management as understood
in this report. Subsequent chapters will flesh out this model by enumerating concrete
requirements and use cases, and present an example of an existing system which implements the
model.

For the purposes of this report and the system we propose to build, the fundamental unit of data
storage is the file. A file is an opaque sequence of bytes (or more properly, a collection of one or
more versions, each of which is an opaque sequence of bytes); in particular the SDM system
enforces no structure on the contents of a file. Although some features of the system (like full
text search) may access the contents of some files, this does not imply that the SDM system
knows anything about those contents or their format. This stands in contrast to a hypothetical
system for storage of structured data in which the entire content of each datum is understood by
the system; for instance, a system that explicitly stores tables of numbers and can retrieve
specific values on demand, or even perform computations on them. Such a system obviously
makes significant assumptions about the data that can be stored in it, and trades power for
generality.

Files are the fundamental unit of data storage, but the artifact is the basic unit of organization.
An artifact has a collection of metadata and contains zero or more files. The metadata include
everything the system knows about an artifact. An artifact also has a type, which is effectively a
schema for the metadata it is expected to have and a partial mapping for the contents of the
metadata. Artifacts can therefore represent everything from a document or folder to an event like
a simulation run.

An artifact is connected to other artifacts via relationships, which themselves are artifacts and
therefore contain arbitrary metadata to describe the nature of the relationship. A relationship can
represent anything from containment of a document in a folder, to a dependency between a
simulation result and an input deck. Note that the metadata for the latter kind of a relationship
can include details about the simulation process – analysis code, hardware platform, software
versions – that was used to create the dependent file.

Artifacts that represent documents will be organized in folders and ultimately in projects. A
project, with an associated team of users, is a primary mechanism for access (and access control.)
Typically a user will work with a single project at a time. Sites that do not wish to organize
work this way could simply use one project, with one all-encompassing team, to hold all of the
organization’s documents. Of course, a project has its own associated metadata; in particular, a
project can belong to a specific campaign.

2.2 Basic Use Cases
Although an SDM system can be quite complex, the fundamental use cases are quite simple, and
are listed here in this section. Later chapters of this document will fill in many details, but
ultimately the following small set of use cases cover most of what the system is expected to do.

12

2.2.1 Commit artifacts
The client software allows users to commit organized collections of files to the repository. The
files are stored securely at the server and the organization and metadata about the file are
preserved.

2.2.2 Query artifacts
The client can perform queries to determine what artifacts are available, understand their
organization, and list their metadata. The query capability should be sufficient to support a
project explorer that allows users to graphically browse the contents of a project within the
repository (Figure 1). The directory structure within the project folder is mirrored between the
graphical client and server. Visual decorators allow users to easily identify which files and
folders are local-only, remote only, or on both the client and server.

Figure 1. Project Navigator View

2.2.3 Download artifacts
If the user wants to view the contents of a given project file or edit it, they must download it to
their local workspace. The user can select individual files to download, or they can select any
folder, including the overall project folder, and recursively download the entire contents of that
folder.

13

3 USER REQUIREMENTS
3.1 Configuration management

3.1.1 Document Versioning
The system shall allow users to commit version changes to documents. This will include the
following version metadata:

3.1.1.1 Version owner
3.1.1.2 Revision comment
3.1.1.3 Revision date

3.1.2 Baselining*
A baseline is a collection of documents that go together to form a higher-level object.
For example, baselines are used in design engineering to tag part files that make up an
assembly. In modeling and simulation, baselines can be used to keep track of the files
associated with a model and its simulation results files. Models can be composed of
multiple mesh files, and input file, include files, etc.

3.1.2.1 Baseline creation: The system shall allow users to create baselines from a
collection of files.

3.1.2.2 Baseline downloading: The system shall allow users to download all files,
and only those files, associated by a given baseline tag.

3.1.2.3 Edit baselines: Not sure if this is needed or even rigorous data
management. The idea is that a user could add or remove files from an
existing baseline.

3.1.3 Dependency Management
The system shall provide mechanisms to keep track of parent/child relationships between
files. While this sounds similar to baselines, it is a fundamentally different concept.
Baselines are collections of files that go together to represent a higher level thing. File
dependencies provide provenance metadata as to how a file came to exist. Examples of
dependency relationships include:

 A CAD model is a parent to a mesh created from it

 An input file and a mesh file are parents to a simulation result file
3.2 Security

3.2.1 Flexible authentication system
The SDM system shall be able to authenticate users via an organization's own systems. A
Kerberos integration should detect an existing Kerberos ticket, should one exist, and use that to
authenticate the user.

3.2.2 Personnel Database Interface
The SDM system should have an interface to industry standard personnel databases (e.g. LDAP).

3.2.3 Need to Know (NTK) Access Control

14

In general, access control is based on team membership and team roles per the SDM system. In
addition, team management shall be provided by custom integrations with third party access
control systems.
3.3 Document Access Control
The system shall organize all information into projects, which will associate a given set of files
with a set of users ('the team members'). In general, documents checked into a project have
common need to know access. In the case where team members import documents from other
projects, the access control list of the originating project in used.

3.3.1 Project Browsing
Users shall have the ability to browse projects that they have access to. The browse operation
should include obtaining a list of project contents and any subdirectories.

3.3.2 File name search
3.3.3 Full text search*
3.3.4 Metadata based search

3.3.4.1 Document type
3.3.4.2 Owner
3.3.4.3 Document attributes. This could include user attributes applied to

documents as well as the standard set of attributes (e.g. creation date, size,
etc)

3.3.5 Search and Need-To-Know (NTK)
All searches can only return results that the user can see based on NTK controls. Results must be
filtered on the server not on the client.

3.3.6 Document URL’s
Documents in the SDM repository can be referenced via URL’s that can be pasted in documents
(e.g. Word or PowerPoint).
3.4 Document Metadata

3.4.1 Classification
Documents are marked with a classification that can be used to adjudicate NTK. This should be
implemented in a generalized way. An individual site can use this to tag documents from a
standard set of classification.

3.4.2 Engineering notes
The SDM system will provide mechanisms to attach note to documents.

3.4.3 Standard document attributes
The SDM system will have a standard set of document attributes, including file size, creation
date, mod date, MD5 check sum, etc.

3.4.4 User attributes

15

The SDM system should allow users to define their own name/value attributes.
3.5 Interfaces

3.5.1 RPC interface
The primary API shall be an object-based remote procedure call interface, such as a web services
interface. Other interfaces can be implemented atop this interface.

3.5.2 Command line interface
At the most basic level of functionality, a command line interface will allow users to check in
and check out files from the SDM repository. The command line interface will provide access to
other SDM functionality that is analogous to a GUI client.

3.5.3 Web Interface
A web interface will allow users to access documents via a web browser, without having to
install client software. This interface will be useful for sharing information with content
consumers (e.g. managers and the analyst’s customers) more so than content providers (e.g.
analysts)

3.5.4 Workflow component interface
The workflow interface will allow users to access the SDM repository (e.g. commit or download
files) as a task in an automated workflow.
3.6 Project Requirements Management
The system shall allow users to assign a level of formality (LOF) to a project.

3.6.1 Level of Formality
3.6.2 Requirements
3.6.3 Peer Review

16

4 FUNCTIONAL REQUIREMENTS
In this section, we provide a full list of SDM-related system functions that the new service would
be expected to support. Although the new service may not support each of these operations
directly, it must be possible to compose each of these functions out of more fundamental
operations.
4.1 Project Actions
Projects associate a given body of work within an hierarchical structure with a given set of team
members. Projects are intended to have a specific lifetime, and a project should have an
identifiable set of deliverables. Of course, projects may be used as a general storage area without
the need for a time frame or specific outcome. By associating teams to projects, a project is a
primary focus for access control.

4.1.1 Roles
A project has 1..N individuals who participate in the creation of artifacts in a project. Within a
project, there are three roles:

4.1.1.1 Team Member : may create folders and artifacts within a Project.
4.1.1.2 Team Lead : in addition to being a Team Member, may do the following:

4.1.1.2.1 Modify the team membership. Adjusting the team is implicitly
a change to Need-to-Know.

4.1.1.2.2 Make changes to the access control of a project
4.1.1.2.3 The team lead can take ownership

4.1.1.3 Project Manager: in addition to being a Team Lead, may also conduct
certain operations pertaining to the lifecycle of the project.

In addition to the Project Roles, the concept of an artifact owner is important. The individual
who originates an artifact is its owner. The owner of a piece of data has the ability to determine
certain aspects of its sharing, and can restrict the visibility of an artifact.

4.1.2 Create Project
Any authenticated user may create a Project. Project creation collects certain attributes about the
project. The user may specify a Project Manager who is different than the initiating user.

4.1.2.1 Sample Existing Project Attributes
 Project Name
 Description of the project. Ideally this description should indicate the expected

deliverables
 Classification (UUR -> SRD)
 Classification Modifiers (Export Controlled, ITAR)

17

 The Analysis Discipline (e.g., thermal, structural, etc.; should be multi-select)
 Responsible Manager
 Project start, estimated finish, actual finish.

Figure 2. Project attributes

4.1.3 Advance Lifecycle
Projects have a defined lifecycle. During the Lifecycle, different access permissions are
available. It is expected that different team members would participate at different points in the
Project Lifecycle.

4.1.4 Modify Attributes
The attributes associated with a project may be modified by a Team Lead. Certain attributes may
be restricted in the ability to be changed by Business Rules, such as lowering the classification of
a project when it contains artifacts of a higher classification.

4.1.5 Adjust Team Members (see Team Actions)

18

4.2 Folder Actions
4.2.1 Create Folder

Any member of the team should be able to create a folder at any level in the project hierarchy.
Folders are organizational containers that hold artifacts or other folders. The top level project is a
specialized folder with additional attributes.

4.2.2 Add Artifact to Folder
Any Team Member may add an artifact to a folder in a given project. Artifacts may be linked
across projects subject to NTK Business Rules.

4.2.3 Remove Folder from Folder
Any Team Member may remove a folder from a parent folder (subject to folder locking). How
the recursive contents are handled depends upon Business Rules.

4.2.4 Remove Artifact from Folder
Any Team Member may remove an artifact from a folder. An artifact need not have a parent
folder (though it will always have a controlling Project). In essence, removing an artifact from a
folder is removing the relationship between the two. The removal of an artifact may be a
precursor to the deletion of the artifact, but said deletion is not a requirement. In addition, since
an artifact may "exist" (i.e., be linked to) multiple parent folders, removing an artifact from a
folder does not imply deletion. Business Rules or a locked folder may prevent detaching an
artifact from a folder.

4.2.5 Delete Folder
Any Team Member may delete a folder in a project. Business Rules determine how recursive
contents are handled. Most specifically, some artifacts may be deleted (if they are not referenced
elsewhere) and some may merely be detached from the folder prior to the folder being deleted.

4.2.6 Update Folder Attributes
The owner of a folder or any Team Lead may modify the attributes of a folder. Business Rules
may prohibit certain modifications, such as raising a folder's classification higher than a parent
folder. The "name" of a folder is considered an attribute.

19

Figure 3. Folder attributes.

4.2.7 Adjust Sharing
Any Team Lead may adjust the sharing of a folder by applying a group to the folder. Such
sharing is inherently an NTK operation. Artifacts already present in the folder shall have their
visibility adjusted. New artifacts added to a folder shall have the visibility associated with the
new scoping.

4.2.8 Register for Notifications
Any Team Member may register for notifications for changes to the folder. Changes include
adding or removing children (other folders or artifacts).
4.3 Artifact Actions

4.3.1 Create Artifact
Any Team Member may create an artifact in a folder. An artifact is an object that represents the
metadata about some deliverable. It may have N files attached to it, though current Business
Rules limit a single file to an artifact. Any file may have N file versions attached. A file may be
stored in the repository, or it may be a link to an external storage location. Artifacts may be of
various types, and each type has a set of attributes associated with it. The specific attributes
associated with the artifact may be modified by the owner of the artifact (usually the individual
who created the artifact), or a Team Lead.

4.3.2 Add File Version to Artifact
Assuming the artifact is not locked to a specific individual, any Team Member may commit a
new version of a file to an artifact.

20

4.3.3 Add Artifact to Folder
Within the same project, any Team Member may add an artifact to any project. An artifact may
have multiple parent folders (i.e., it may be linked in multiple places), but exists as a single
object. Adding an artifact to a folder in a different project may be restricted due to NTK Business
Rules. When an artifact is added to a folder, Business Rules are processed to ensure compliance
with certain situations. An example of a Business Rule is that an artifact cannot be added to a
folder with a lower classification. When an artifact is added to a folder, Business Rules may
automatically apply certain default settings (e.g., classification).

4.3.4 Update Artifact Attributes
The artifact owner or any Team Lead may modify any attribute of an artifact. Artifacts have a
type, and each type has specific attributes.

4.3.5 Move Artifact to Another Folder
Any Team Member may move an artifact between folders within the same project. This
capability is needed to support refactoring.

4.3.6 Modify Artifact Lifecycle State
Artifacts have an associated Lifecycle. The owner or a Team Lead may modify the Lifecycle
state of an artifact. The operations permitted against an artifact may differ by lifecycle state. The
states and access permissions are definable by the type of the artifact. Modifying the Lifecycle
state collects an electronic signature and optional comments. Business Rules may prohibit certain
transitions. Additional Business Rules may be invoked upon a transition (such as keeping only
the latest file version).

21

Figure 4. Updating lifecycle state for an artifact.

4.3.7 Delete File Version(s)
The artifact owner or any Team Lead may delete specific versions of a file attached to an artifact.

4.3.8 Delete Artifact
The artifact owner or any Team Lead may delete an artifact. Deleting an artifact removes it from
all parent folders, removes all files and file versions from the file storage location (note:
externally referenced files are not affected), and the artifact metadata is deleted. A history
notation about an artifact deletion should be available.

22

4.3.9 Search for Artifact by Attributes
An artifact may be found by searching for values on any of its attributes. All search results are
constrained on the server to match only authorized results. Note that searching by full text in a
file attached to an artifact should also be supported, but the returned Artifacts must be filtered on
the server as well.

4.3.10 Specify Access Control on an Artifact (e.g., group or role)
Artifacts, by default, are visible only within the context of a project, and thus limited to the team.
Access may be reduced to only the Object Owner, or may be expanded by associating other
groups with the artifact.

Figure 5. Specifying access control on an artifact.

4.3.11 Change Owner of an Artifact
The current owner or any Team Lead may change the ownership of an artifact. Artifact
ownership has certain NTK responsibilities associated with it, and in some cases an owner may
perform actions (such as locking for modification).

4.3.12 Relate Artifact to another Artifact
An artifact may be related to another artifact. For example, there may be an artifact type of
"Engineering Note" that may be related an artifact type of "Analysis Artifact". The specific
relationship type determines the cardinality and directionality of any relationship, and specific
relationships may carry particular attributes as well. The state of an artifact may prevent certain
associations, and other Business Rules may also be applicable.

23

4.3.13 Relate Artifact to other Object
There are instances where an artifact should be relatable to other objects, such as Requirements.
The specific use cases vary slightly by the other Object's controlling lifecycle and attributes, as
well as the relationship between the Artifact and the other object. Nonetheless, the general case
is that any Team Member may associate an Artifact with another relevant object in the Project.

4.3.14 Lock to prevent modifications
An owner or a Team Lead may lock an artifact to prevent modifications. The attributes on a
locked artifact may only be modified by the locker, and only the locker may add new file
versions to the artifact. The locked status does not affect viewing the artifact or downloading
files (subject to other access control issues). Any Team Lead may remove a lock on an artifact.

4.3.15 Register for Notifications
Any Team Member may register for notifications about changes to an artifact. One may register
for notifications about new files or file versions added, if the artifact is added to a folder (moved
or linked to an additional one), when it is locked or unlocked for modifications/file commits, or
when attributes are modified.
4.4 Team Actions

4.4.1 Add Person to Team
Any Team Lead may add an individual to the project team. Adding a Team Member is inherently
an NTK decision. Any registered user may be added to the team. Business Rules may prohibit
certain additions depending upon project attributes (e.g., classification).

4.4.2 Change Role of Person on Team
Any Team Lead may modify the role of a person on the team. An individual may be changed
from a Team Member to a Team Lead or the Project Manager. An individual may be changed
from a Team Lead to a Team Member. Changing the role affects certain access permissions, as
well as the ability to change team membership and participate in artifact sharing (a form of
NTK).

4.4.3 Remove Person from Team
Any Team Lead may remove an Team Lead or Team Member from a Project. The Project
Manager may not be directly removed from the team, but instead a new Project Manager must be
assigned, and then the previous Project Manager (who will now be a Team Lead) may be
removed.
4.5 History Actions

4.5.1 Automatic History
Most activities (e.g., adding an artifact, committing a file version to an artifact, modifying
attributes, etc.) automatically generate a history entry. History entries must be relatable to the
user, the time of the action, and the specific object.

4.5.2 Add User Defined History Entry

24

It must be possible to add User Defined history to an Object. That is, history entry types must not
be limited only to system generated entries.

4.5.3 Obtain History for an Object
For any Object, it must be possible to obtain the history entries relating to that object.

Figure 6. Obtaining history for an object.

25

5 TECHNICAL REQUIREMENTS
In this section, we provide a list of fundamental properties and capabilities that the proposed new
system must support from a developer’s perspective. In general, the intent is that operations
listed here must be a primitive operation available on the system via an API, and each of these
properties is essential to our ability to implement the new service.
5.1 Open Interface

5.1.1 Must be possible to integrate with Java, Python, command-line front ends
5.2 No Runtime Cost

5.2.1 Must be possible to deploy with no commercial license encumbrance
5.3 Transaction Management

5.3.1 Transaction support required
5.3.2 ACID compliance
5.3.3 Both read and update transactions

5.4 Ability to define Attributes
5.4.1 Type (e.g., String, float, etc.)
5.4.2 Default Values

5.5 Ability to define various "types" of objects
5.5.1 Collection of attributes
5.5.2 Hierarchical and inheritable
5.5.3 Optionally used in search

5.6 Ability to separate data into different shards or tablespaces
5.6.1 Based upon type or controlling workflow

5.7 File Storage
5.7.1 External to the metadata management
5.7.2 Must support:

5.7.2.1 Stored files
5.7.2.2 Externally referenced files
5.7.2.3 Large file size
5.7.2.4 Progress monitoring on file upload/download

5.7.3 File Versioning
5.7.4 A File Version must exist as an object that may be related (e.g., baselining)

5.8 Index-based Search
5.8.1 Attribute based for selecting metadata

26

5.8.2 Full file text search
5.8.3 Must respect the security model

5.9 Flexible Authentication mechanisms
5.10 Authorization must

5.10.1 Be object-level based
5.10.2 Support object attributes for authorization adjudication
5.10.3 Support custom modules for extending the authorization model
5.10.4 Must be handled on the server (i.e., never return to the client data that is

inappropriate)
5.11 Access and Collections must include

5.11.1 Person
5.11.2 Group
5.11.3 Role (but RBAC alone is insufficient)
5.11.4 Must be able to prevent "owner" from having access

5.11.4.1 If the owner loses an access capability (e.g, Sigma-15), then ownership
alone must not allow access

5.12 Extensible Trigger System
5.12.1 Type based
5.12.2 Event driven for multiple event types (pre/override/post on various events

such as create/update attribute/delete/etc.)
5.13 Ability to "subscribe" to various object events

5.13.1 Notification when certain object events occur, such as adding a file,
changing the owner, etc.

5.14 Lifecycle states
5.14.1 Ability to define different lifecycles
5.14.2 Apply these lifecycles to the objects
5.14.3 Access control must be tied to lifecycle state

5.15 Administrative Console
5.16 Unique Object Reference (i.e., an Object Identifier)

5.16.1 Must be stable
5.16.2 Must not be tied to a display attribute that can change

5.17 History entries created automatically by various activities
5.17.1 Ability to add custom history entries
5.17.2 History must tie to specific objects

27

5.18 Relationships between objects
5.18.1 Attributes on relationships
5.18.2 Cardinality
5.18.3 Type limited
5.18.4 Direction (to/from based upon object type)
5.18.5 Ability to use in traversal
5.18.6 Participate in the Trigger system

5.19 Ability to lock an object to prevent updates and/or file additions
5.20 Robust Permission Model

5.20.1 Create
5.20.2 Read Attributes
5.20.3 Update Attributes
5.20.4 Delete
5.20.5 Relate to a Parent Object
5.20.6 Relate to a Child Object
5.20.7 Remove Relationship
5.20.8 Add File Version
5.20.9 Remove File Version
5.20.10 Download File Version
5.20.11 Create Copy

28

29

6 CASE STUDY
6.1 The Sandia Analysis Workbench (SAW)
Sandia’s SAW product uses a classic client-server architecture (see Figure 7.) Both client and
server are portable and written in Java. The client is built on the Eclipse platform†, an application
framework that allows for modular development of complex, extensible applications. The SDM
client in SAW is all custom code.
The SAW SDM server uses a web application architecture. The server is deployed in the Tomcat
application container‡. Client-server communications are implemented using Spring Remoting§,
using HTTPS as the transport protocol – meaning that the SDM server essentially uses “web
services” as its API. Authentication is handled using Sandia’s Kerberos infrastructure.
The object store is based on eMatrix, a commercial PDM product which is simply a Java library
that forms part of the server application. Usage of eMatrix itself is therefore entirely within the
server. eMatrix in turn stores its data in the corporate Oracle database. The filestore is currently
located on Sandia’s corporate SAN.

Figure 7: SAW SDM Architecture

6.2 Current Risks and Limitations
The immediate motivation for replacing the SAW SDM service is to reduce risk to existing
deployments, and to ease adoption for new customers by reducing the expense of standing up a
central repository. The SAW SDM server is based on an old version of the commercial eMatrix
product, and Sandia is no longer paying for maintenance. Significant changes to the software
would be necessary to move to a newer version of eMatrix, and it’s not clear that the necessary
features are available in newer versions. If this older version of eMatrix is incompatible with
future changes to the Java Virtual Machine or the Linux OS, the SAW SDM server would be tied

† http://www.eclipse.org
‡ https://tomcat.apache.org
§ http://docs.spring.io/spring/docs/current/spring-framework-
reference/html/remoting.html

30

to obsolete versions of those elements as well, and Sandia security mandates would eventually
make it impossible to continue without updating or replacing eMatrix.
Faced with the choice between paying annually to maintain an eMatrix license – and still
needing to do substantial work to modify the server to work with newer software – or
abandoning eMatrix altogether, the latter seems like a more cost-effective approach in the long
run. Furthermore, even if we were to reduce risk by upgrading, we would still face the issue that
expensive third-party licenses impede adoption by outside customers. Therefore, the decision to
leave eMatrix in favor of an unencumbered alternative seems obvious.
The current SAW SDM architecture is based around the idea of data physically residing on a
filestore associated with the repository. Files are uploaded to and downloaded from the filestore
via the server’s web services API. Although the current server easily handles multi-gigabyte
files, it is not designed to store large numbers of such files, nor can it handle larger files in the
terascale or larger regimes that cannot be easily moved.
The current server supports the notion of a file on an external data store, although this concept
isn’t exposed to the user. Ideally, in the next generation server, large files would be handled by
such first-class references to external data, so files residing on other systems could be easily
referenced in situ. Besides improving scalability, this would allow the new SDM server to
federate with other data management systems.

31

7 SOFTWARE SPECIFICATION
7.1 SDM Object Model
Our SDM data model consists basically of four data types:

 Container

 Document

 Relationship

 Administrative Objects (Person, Role, Group)
Figure 7 shows a simplified version of an SDM object model that is created from these four data
types. It is illustrative of the complexity of E-R modeling appropriate for our domain. As
described in the text, it is richer than the model for a plain document management system, but
less complex than the model used by a full product data management system.

Analysis Workspace

1 : N

Work Products
Document Folder

0..N

1 : 1

PWA TEP

0..N

0..N

Financial Task

0..N

Level of Formality
1 : 1

1 : 1

LOF Requirement

1 : N

0..N

0..N

0..N

0..N

0..N

0..N

0..N

Version
Document

08/16/10 Official Use Only, Exception 3 : StrikeWire Proprietary

0..N

SNL Engineering Note

N:1 N:1

N:N

Version
Document0:N

Person

Project Member

1:N

1:N

Artifact

0..N

1:N

0..N

Document

0..N

0..N

1:N
Arbitrary Document,

connected to a
container

Instantiated Document

Type

Version Document

Analysis Project

Document

Analysis Folder

Document

Workspace Vault

Document

SNL Process

Document

VDVD

Document

Version
Document1:N

All Document objects have
N Version Document
Objects for each File.

There may be N files in a
Document.

1:N

SNL Review

Figure 8. SDM Object Model

7.1.1 Container

32

Figure 9: Container object model

7.1.2 Document
Document objects store essential metadata about files stored in the repository. They have
version objects that store metadata about a specific file version. The actual files are associated
with a version object.

33

Figure 10: Document type object model

7.1.3 Relationships
Relationships have specific qualities such as type restrictions, direction, cardinality, etc.

34

Figure 11. SDM Object Model

35

7.2 Proposed Implementation
In considering how to store simulation data and especially metadata, we have vetted several
different approaches. For the purposes of narrowing the field, the following guidelines were
utilized. An object here is a representation of some abstract manifestation of a concept found in
the data model, such as a “document” or “folder.”

 An ability to define “types” in an inheritable, hierarchical manner, where a type defines a
series of expected attributes.

 The ability to model complex relationships between the objects, including attributes on
the relationships.

 A powerful query system allowing for traversal of the relationships.
 An ability to integrate a robust security model leveraging attributes of an individual

object.
 Open source
 Performant
 Transaction support
 Trigger Support
 Unique Identifier per record

While traditional relational databases such as MySQL could be utilized, using one creates a need
to generate mappings between the programming objects and the underlying table-based stores.
Traditionally, some type of Object Relational Mapping (ORM) system has been utilized.
However, in our experience, ORM – while powerful – is also problematic in terms of
performance and comprehensibility of the underlying data storage structure.
In the past decade, a new approach to data storage has arisen with the NoSQL movement. This
approach emphasizes different storage approaches rather than the traditional table-based
approach with rows and defined columns. NoSQL approach emphasizes a more flexible way to
define an object, typically by leveraging key-value pairings as the definitional unit. In addition,
relationship modeling with graph-based engines in another feature of several NoSQL databases.
After looking at several potential candidates, we propose to utilize OrientDB
(http://orientdb.com/) as the underlying storage engine. OrientDB meets most of our previously-
stated technical requirements:

 Documents, with schema-based typing, as a primary object
 A graph database that allows for efficient, performant queries

o Documents are stored as a Vertex on the graph
o Relationships are the Edges between the vertices

 Full text Search support
 ACID Transactions
 A robust security model, with triggers that allow for additional validation

http://orientdb.com/

36

 Open Source License
OrientDB also supports a variety of APIs to access the data, including Java, Python, PHP, and
Perl. A webserver can be easily written to overlay these approaches to support, for example, a
full RESTful approach.

The requirements outlined in this document could of course be met by multiple means. The
largest decision would be between adopting and customizing an existing product versus creating
a new product tailored to these requirements. In the past, we have surveyed the market of
existing PDM software in an attempt to locate any tool that would meet our requirements, and
have found none suitable. In industry, comparable systems are generally purpose-built using
Java Servlet technology directly on object-relational mapping platforms like JDO** or JPA††, or
on NoSQL‡‡ databases. A vast array of libraries and tools is available in this space for creating
applications like our SDM service, which would present no special difficulties. Using these
industry-standard tools and applicable best practices for architecture would allow us to leverage
a great deal of existing work and provide a viable path to creating a sustainable system.

** https://db.apache.org/jdo/
†† http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html
‡‡ https://en.wikipedia.org/wiki/NoSQL

37

8 APPENDIX I: GLOSSARY

Term Definition Comments

ACID Atomic, Consistent, Isolated, Durable.

API Application Programmer’s Interface

Application
Layer

layer 2: a simulation code or similar composition of
packages, interacts across memory hierarchies and
archival storage and data management systems. For a
simulation code the subcomponents model physics
packages and their interaction with analysis and I/O.
This layer is the purview of the code developer and third
party library developer, as well as systems software etc.

Artifact An artifact is an object that represents the metadata
about some deliverable. It may have N files attached to
it, though current Business Rules limit a single file to an
artifact. Any file may have N file versions attached. A
file may be stored in the repository, or it may be a link
to an external storage location. Artifacts may be of
various types, and each type has a set of attributes
associated with it. The specific attributes associated with
the artifact may be modified by the owner of the artifact
(usually the individual who created the artifact), or a
Team Lead.

Baseline A baseline is a collection of documents that go together
to form a higher level object. For example, baselines are
used in design engineering to tag part files that make up
an assembly. In modeling and simulation, baselines can
be used to keep track of the files associated with a
model and its simulation results files. (Sandia definition,
seems to conflict with LLNL usage of this term)

Business Rules Business rules are statements that tell you whether you
may or may not do something, or give you the criteria
and conditions for making a decision. They can be
implemented as site-specific customization of general
processes.

CAD Computer-Assisted Drafting

Campaign
Layer

a process over time of repeated process layer jobs, as
user(s) change approach, physics, in order to complete a
campaign or project.

CompSim Computational Simulation

38

Data numerical and/or categorical information. Data may be
used as input to simulations (e.g., equation of state
tables), generated as output (time histories, Silo files),
produced in digest form (statistical summaries, ultra
files), contained in log files in human readable form
(e.g., time step information, indices and locations of
zones with negative sub-volumes) The size of data used
as input and generated as output is widely varying, so
we probably need a nomenclature for distinguishing
data that might be amenable to longer term storage and
index, vs. data that needs to reside on a parallel
filesystem.

Digest Data of smaller size that describe the simulation either
in aggregate, or in a sample-based fashion. Examples
include ultra curves, scalar figures of merit (integrated
values over time and/or space), movies, reduced models
(e.g., statistical information, morse theoretical structures
such as contour trees), images (e.g., simulated
diagnostics), ...

Document A human readable form of information that may or may
not contain data (most likely in digest form) and may be
considered a discrete entity. Examples: Log files, power
point, PDF files, human generated simulation input
decks/scripts, post-processing scripts. Documents will
often have relationships to data and simulations (data
model to be determined!)

File a collection of bytes stored in a filesystem, object store,
or content addressable store (like git). A single data set
might be composed of many files. Documents are
typically one file, although a LateX 'document' is often
built out of many source files.

Layer a hierarchically defined subset of a Simulation
workflow, layer 0 being the outer most layer (see below)
encompassing the interface to the user(s), with
lower/deeper layers increasingly defined by computer
science and system engineering considerations (e.g., in-
situ coupling)

LANL Los Alamos National Laboratories

LLNL Lawrence Livermore National Laboratories

Meta-data Data about a simulation, including identifiers the
uniquely specify inputs that might be hosted
elsewhere, file paths, physics and other parameters.

39

Meta-data may be a function of time (e.g., mesh
management parameters for ALE).

Model The set of data and documents that define a simulation.
This includes input decks, meshes, data
files, etc.. A model can be composed of several
baselines under the Sandia definition. Example: starting
from a Shock tube problem definition, the model would
consist of the mesh specification or input script, the
material data (densities etc.), equation of state selection,
numerical solution methods and approaches, and other
aspects of setting up a simulation code.

Model
(SNL
definition)

The set of data and documents that specify a particular
simulation of a problem. That is, mesh descriptions,
material data and other tabular or other specifications,
simulation input scripting and settings, job submission
requirements (number of nodes and domains etc).

NTK Need To Know

Package
Layer

layer 3: the processing of kernels and their interaction
with compute hardware, including cache levels, memory
hierarchies. In this naming convention, a task based
parallel infrastructure might be considered a package
layer workflow engine. Alternatively, this could be the
per-core aspect of a simulation workflow

Parameter
Study

PDM Product Data Manager

Problem The set of data and documents describing the physical
characteristics of an experiment that, when coupled with
a model, can be used to produce simulations of the
experiment. Example: a shock tube problem might
consist of the physical dimensions of the tube and
membrane, identify the materials involved, but not the
characteristics of those materials, and the characteristics
of the shock generation.

Process
Layer

this layer interfaces with the user ('a person who runs
codes'), may involve the running of suites of
applications, or sets of closely coupled applications (in
the sense that the user must manage inputs and outputs
and execution of some simulations and inputs to others).
Defines and end-to-end repeatable process (e.g.,

40

scriptable), where the user interacts with HPC
environment, constructs code inputs, and schedules/runs
analysis applications.

Project
(SNL)

Projects associate a given body of work within an
hierarchical structure with a given set of team members.
Projects are intended to have a specific lifetime, and a
project should have an identifiable set of deliverables.
Of course, projects may be used as a general storage
area without the need for a time frame or specific
outcome. By associating teams to projects, a project is a
primary focus for access control.
Roles:

 team member: may create folders and artifacts in
a projects

 team lead: is team member, and may adjust team
membership and add meta-groups

 project lead: is team lead, and may make
changes pertaining to lifecycle of the project

RBAC Role-Based Access Control

Run A single instance of one or more simulation codes and
the output for it, e.g. 1 msub / sbatch submission. A
problem combined with a model may be executed and
thus generate several runs.

clarify

SDM Simulation Data Management

Simulation
Workflow

The process of running an simulation or simulations,
which may or may not be closely coupled, in the service
of a WCI Workflow. In LANL parlance a workflow
(and its layers) can be separated into distinct phases.

SNL Sandia National Laboratories

Step A single instance of something that can be executed.
This does not need to be a simulation. e.g. a single
`srun` call, calling a script

clarify

Study The collection of runs whose results will be observed
together.

clarify

Suite A collection of studies, which may include re-runs, and
may involve multiple different simulation codes

clarify

Workflow
(generic)

an orchestrated and repeatable pattern of business
activity enabled by the systematic organization of
resources into processes that transform materials,

Wikipedia definition

41

provide services, or process information

Workflow
(WCI)

the process of simulation, experiment, and theory, by
single individuals or work groups, required to complete
a campaign or project and propagate/disseminate its
results

42

DISTRIBUTION

[List external recipient names and addresses]

4 Lawrence Livermore National Laboratory

Attn: N. Dunipace (1)

P.O. Box 808, MS L-795
Livermore, CA 94551-0808

[List in order of lower to higher Mail Stop numbers.]

1 MSXXXX Name of Person Org. Number
1 MSXXXX Name of Person Org. Number

1 MS0899 Technical Library 9536 (electronic copy)

